欢迎光临锦工风机官方网站。提供优质罗茨鼓风机罗茨风机回转式鼓风机星型供料器,气力输送设备等产品

罗茨鼓风机叶片和墙板间隙_罗茨风机

罗茨鼓风机叶片和墙板间隙_罗茨风机

罗茨鼓风机叶片和墙板间隙:三叶罗茨风机间隙大响声会大吗?答疑问!锦工风机

  问题:三叶罗茨风机间隙大会造成噪音增大吗?三叶罗茨风机间隙有多处,针对不同地方,看下锦工小编的解释吧!

  1、叶轮与叶轮之间的间隙增大

  为了便于大家理解,小编先附上三叶罗茨风机与二叶罗茨风机的动画图,地址如下:

  二叶罗茨风机动画点击直达

  三叶罗茨风机动画点击直达

  三叶罗茨风机叶轮与叶轮之间的间隙增大,如果单纯的是叶轮间隙增大,叶轮与叶轮之间的摩擦间隙,但是与机壳的摩擦增大,造成异音增大是必然,机械摩擦之间会产生较为严重的噪音。按照科学的设计,叶轮与机壳之间的间隙在0.2-0.3mm,叶轮间隙增大势必造成叶轮与机壳的摩擦,产生较为严重的噪音。

  2、叶轮与机壳之间的间隙增大

  在科学设计下,使用一段时间之后,叶轮与机壳之间的间隙增大,叶轮之间相互摩擦,也会产生较大的噪音,与上面的解释相同,噪音产生为叶轮之间的机械摩擦。叶轮与叶轮之间的间隙,在设计师需保证0.4-0.5mm的间隙,才能保证三叶罗茨风机的物理性质。

  3、非科学设计的情况

  在设计之初,叶轮与叶轮之间设计的间隙过大,会造成气体回流,罗茨风机的性能存有缺陷,如果我们采购这样的设备,三叶罗茨风机也会存在有一定的噪音,即便是科学设计的三叶罗茨风机也会存在有噪音,但是,设计时将叶轮间隙增大,对于噪音值影响很小,主要危害在于使用时,可能会造成风量压力不足的情况。

  罗茨风机科学的设计间隙如下:

  叶轮与叶轮之间的间隙0.4-~0.5MM;叶轮与叶壳之间的径向间隙0.2~0.3MM;叶轮与左、右墙板之间的轴向间隙0.3~0.4MM(左墙板间隙必须大于右墙板间隙0.05MM以上),同步齿轮的啮合间隙0.08~0.16MM。

  如果我们使用的三叶罗茨风机在使用时,出现叶轮间隙增大或者变小的故障,该类故障也属于较难维修的情况,需要对进行精确测量,如果难以自行修复,可以联系。

  小结:三叶罗茨风机间隙的调整是罗茨风机整个检修过程中非常重要,掌握起来难度也比较大,通过分析罗茨风机的结构原理,叶轮在旋转一周的过程中,在士45°的位置上(指叶轮压力角与水平线成士45°角度时,两叶轮之间的间隙是两叶轮之间最关键的间隙,且有两个+45°和两个-45°位置,在这些位置上,两叶轮最大轴向剖面刚好处于相对平行状态,因此这个角度就是调整风机工作间隙的最佳位置。如果您在罗茨风机采购方面有什么问题,可以联系锦工三叶罗茨风机厂家热线

  文章

  >>三叶罗茨风机在怎样的环境中运行更高效呢?

  >>选择优质的氧化风机厂家,没有这么难!

  >>锦工逆流冷却真空泵的独特优势有哪些?

  >>罗茨风机安装教程(图集)文字详细解读!

  >>只有产品质量过硬,才是最好的氧化风机厂家

罗茨鼓风机叶片和墙板间隙:三叶罗茨风机间隙如何调整_罗茨风机

  如何调整三叶罗茨风机间隙来降低噪音是有一定科学根据的。因为三叶罗茨风机取决于转子体积的变化,以将原始想法的机械能转化为气体的压力和动能。与离心式罗茨风机相比,它具有压头高、流动阻力小、送风量大等优点,但在使用过程中效率低,噪音高。

  由于风机噪声大,恶化了劳动条件,污染了职业环境,因此在化工厂,特别是中小型化工领域得到了广泛的应用。因此,人们越来越关注风机的噪声,探讨风机噪声的产生机理和防治措施。

  离心风机和轴流风机在这方面的研究越来越完善。本文分析了罗茨风机气动噪声的来源及其机理。在综合运用各种实例的基础上,提出了降低噪声的各种途径,并探讨了降低罗茨风机噪声的基本途径。

  三叶罗茨风机发生噪声的机理:

  噪声源

  1.罗茨风机

  2.罗茨风机包含多种噪声源。

  3.进排气口气动噪声;

  4.机械噪声,如套管、电击和轴承。

  5.振动辐射的固体声音。

  在局部噪声中,入口和出口的气动噪声(空气动力噪声)最强,在机械正常运行的条件下,机械噪声和电磁噪声等非必要的〔1〕。根据罗茨鼓风机产生的噪声频谱分析,其特征是低频宽带。风扇的气动噪声主要由扭转噪声和涡流噪声两部分组成。

  1、扭转噪声

  扭转噪声是由于在工作轮上的车轮周围的气体介质引起的,通过调整间隙,从而导致周围的气体压力波动。当空气流过叶片时,形成叶片的表层,吸力侧的附面层容易加厚,并且有许多涡流。在叶片后缘,压力边界的吸力边界和边界层构成所谓的尾流区域。在尾流区域中,气流的压力和速度远低于主流气流区域。

  因此,当任务轮反转弯头时,叶片出口区域中的气流非常不均匀。这种不相等的空气流周期性地影响周围介质,导致压力波动形成噪声。空气流动越不均匀,噪音就越大。

  2、涡流噪声也称为涡流噪声或湍流噪声。这主要是因为当空气流过叶片时,湍流边界层和涡流和旋涡被分离。它会导致叶片上的压力脉动。其产生的原因有4:一是表面的气流由紊流边界层构成,叶片中的压力脉动在蜗壳表面、蜗壳的内表面和外表面以及一些外观和噪声中使用。第二种情况是气流通过物体,因为涡流将发生在必要的水平。涡流的离开将形成较大的脉动,第三是流动的湍流导致叶片效应的脉动形成噪声,第四是由两个涡流构成的噪声。

  三叶罗茨风机产生的涡噪声的原因远小于边界层湍流压力脉动和两个涡旋辐射的噪声功率。此外,由于脉冲角产生的噪声不太清楚,进入流的湍流强度并不特别。可以认为,风扇的涡流噪声主要是由第二种噪声引起的,即涡动和涡流离开叶片升力的脉动。

  原标题:三叶罗茨风机轴向间隙作用以及转子间隙的调整方法

  锦工机械给大家介绍一下三叶罗茨风机轴向间隙作用以及转子间隙的调整方法

  三叶罗茨风机启动开机前的安全注意事项:

  1.完全打开进气调节阀,出气调节阀以及旁通管;

  2.检查进风口空气滤清器是否畅通,滤清器进口是否完全打开;

  3.检查管道、阀门、消声器、空气滤清器支撑是否稳固,不得有负荷力加在机壳上;

  4.检查润滑油是否良好,型号是否合适,润滑油层深度应达到规定油线以上3~5厘米,冷却水系统是否畅通;

  5.拨动联轴器、检查叶轮转运是否灵适,有无摩擦碰撞;

  6.检查各部位联接是否良好,有无松动;

  7.清除周围杂物,保持风机两米范围内无杂物;

  8.检查电气部分以及降压启动设备是否完好;

  9.检查检修工具是否齐备,消防灭火器材是否充足完备。

  三叶罗茨风机轴向间隙作用以及转子间隙的调整方法:

  三叶罗茨风机轴向定位的主要作用是:当风机在运行的时候,由于转子发热,轴系产生线膨胀和体膨胀。体膨胀的预留量通过径向加工来保证,线膨胀的预留量则通过轴向定位来确定。轴向预留量太大,风机效率会变低;轴向预留量太小,风机机壳及轴承会发热损坏。

  一般来说轴向间隙不准会产生以下几种故障:

  1.墙板端面磨损

  轴承端面磨损原因主要是2种原因,一种是异物进入转子与轴承座端面,这种情况发生几率太小,这里不做分析。二种是轴向间隙不够造成转子在线膨胀时与轴承端面接触磨损。我们知道任何物质的分子都在做无规则的热运动,分子就有速度,有动能。微观解释气体的压强就是大量的分子对容器壁的撞击,而温度是大量分子的热运动平均动能的度量。温度越高,分子的热运动平均动能就越大,分子的速度就大,我们知道,速度越大,撞击越猛烈,也就是气体的压强越大。当风机产生压力时,反之气体会产生温度。而温度造成转子伸长,如果间隙不够会造成转子与机壳摩擦。

  轴向间隙太小,造成端盖与叶轮端面磨损,同时摩擦产生热量,通过热传导会使轴承温度增加,从而损坏轴承,还会损坏密封环。

  2.风机效率降低

  轴向间隙太大,会造成风机效率降低。三叶罗茨风机由于是容积式风机,它的风压和系统有关系,而和其它关系不大。也就是说和出口管道特性有一定关系。而流量和风机转速关系较大。但是如果轴向间隙调整偏大,会在叶轮端面和轴承座端面形成一个气体通道。而气体通道会使被升压后的空气通过它又回到风机的吸气口,使风机不断的做定量的无用功,使风机风量下降,效率降低。

  3.风机振动

  当间隙太小时,叶轮端面与轴承座端面摩擦。由于动静部位之间摩擦,机组会产生强烈的振动。过大的振动极易造成动静部分摩擦从而造成灾难性的后果,摩擦发生在转轴的密封环处,将会造成转子的热弯曲引起振动的进一步增加,形成恶性循环引起转子的永久性弯曲。而振动与轴的弯曲会造成轴承损坏,齿轮损坏,叶轮损坏,乃至整个三叶罗茨风机报废。

  三叶罗茨风机间隙调整说明

  三叶罗茨风机,各部位间隙在20℃时的静态理论值为:

  1、叶轮与叶轮之间的间隙0.4-~0.5MM;

  2、叶轮与叶壳之间的径向间隙0.2~0.3MM;

  3、叶轮与左、右墙板之间的轴向间隙0.3~0.4MM(左墙板间隙必须大于右墙板间隙0.05MM以上),同步齿轮的啮合间隙0.08~0.16MM。

  风机工作间隙的调整是罗茨风机整个检修过程中非常重要,掌握起来难度也比较大,通过分析罗茨风机的结构原理,叶轮在旋转一周的过程中,在士45°的位置上(指叶轮压力角与水平线成士45°角度时,两叶轮之间的间隙是两叶轮之间最关键的间隙,且有两个+45°和两个-45°位置,在这些位置上,两叶轮最大轴向剖面刚好处于相对平行状态,因此这个角度就是调整风机工作间隙的最佳位置。

  粤协介绍三叶罗茨鼓风机有下面三个方面的间隙需要在安装时进行调整:

  1、主动转子与从动转子之间的间隙;

  2、主动转子和从动转子与机壳内表面的径向间隙;

  3、主动转子和从动转子两端平面与墙板轴向平面的间隙。这些间隙,一般在风机说明书中均有规定。间隙过小时,则容易发热,而使两转子发生摩擦,反之,间隙过大时,则使风机的性能降低。

  因此,风机机体内转子与机壳部分的间隙调整,是整个安装中的关键。三叶罗茨鼓风机各部分间隙调整的如何,将会直接影响机器的性能,若调整的偏差较大时,甚至会产生机械事故。

  本文链接:

  罗茨鼓风机轴承润滑脂 济南三叶罗茨鼓风机哪家好 污水处理用罗茨鼓风机 罗茨鼓风机的工作机理

  山东锦工有限公司

  山东省章丘市经济开发区

  24小时销售服务

  上一篇: 三叶罗茨风机维修视频_罗茨鼓风机

  下一篇: 三叶罗茨风机间隙标准_罗茨风机

罗茨鼓风机叶片和墙板间隙:罗茨风机振动、发热、异响故障原因分析及处理方法

  罗茨风机为容积式风机,普遍应用于石油化工、电力冶金、矿山建材、化肥造纸、污水处理以及轻纺加工等行业。在罗茨风机的运行过程中经常出现振动、发热、异音问题,本文分享讨论这些问题出现的原因及处理方法。

  罗茨风机的结构和原理

  罗茨风机主要由机壳、墙板、叶轮、进出口消声器等4大部分组成。

  机壳:主要用来支撑墙板、叶轮、消声器和固定的作用。

  墙板:主要用来连接机壳与叶轮,并支撑叶轮的旋转,以及起到端面密封的效果。

  叶轮:是罗茨风机的旋转部分,分两叶和三叶,现在由于三叶的比两叶的出气脉动小、噪声小,运转平稳等很多优点,已逐渐代替两叶罗茨风机。

  消声器:用减小罗茨风机的进、出由于气流脉动产生的噪音。

  罗茨风机是通过叶轮轴主动齿带动从动齿同步相向旋转,从而使两叶轮之间和叶轮与墙板,叶轮与机壳之间皆具有适当的工作间隙,形成吸气和排气腔体。通过风机转子旋转,形成无内压缩地将机体内气体由进气到排气腔后排出机体,以达到鼓风目的。

  为了保证罗茨风机的正常运转,必须使两叶轮之间、叶轮与墙板之间、叶轮与机壳之间均保持一定的间隙。

  若间隙过大,会出现被压缩出去的气体通过间隙部分倒流回来,造成风机作功损耗,通常会显现出来的问题是不便于调节。

  若间隙过小,则由于转子、机壳受热膨胀,可能导致两叶轮之间、叶轮与墙板之间、叶轮与机壳之间出现相互摩擦现象,造成机壳与转子的磨损电机负载增大。

  罗茨风机振动、发热、异响原因分析

  罗茨风机主要由双列角接触球轴承、齿轮副、八字叶轮、墙板、机壳等部件组成,其产生振动、发热、异音的主要原因是其主要部件在装配中因加工误差或装配不到位所产生的。

  1)齿轮副

  罗茨风机的运行是依靠主动齿带动从动齿同步相向旋转,带动叶轮旋转从而实现鼓风作用。因此,齿轮副中心距、齿轮箱轴孔中心距加工产生的形位误差是造成罗茨风机振动、发热、异音的主要原因。

  2)轴承轴向游隙调整不到位、轴承座磨损造成风机振动

  当发现风机振动突然增大时,首先用听音棒听轴承转动是否有异音,轴承室是否发热,轴承轴向间隙是否调整合理。这几点问题均会影响风机振动。

  3)叶轮

  罗茨风机的两叶轮相互之间、叶轮与墙板之间以及叶轮与机壳之间均应保持一定的间隙,以保证罗茨风机的正常运转。通常在维修过程中用塞尺进行间隙测量会发现间隙过小,主要是检修人员没有对从动齿轮齿轮圈与齿轮毂之间的定位销进行调整,出现定位作用失效,从而导致风机的振动、发热等异常情况的出现。

  振动、发热、异响的处理方法

  1)解决罗茨风机齿轮副中心距偏差与齿轮箱轴孔中心距偏差的方法

  虽然通过测量和理论性的推算验证了这种误差的存在,但是由于设备制造中已经确定了罗茨风机齿轮中心距之间的配合偏差、齿轮轴线平行度误差、齿轮箱轴孔中心距偏差以及齿轮箱轴孔轴线平行度误差,因此在维修中无法调整误差。解决这些误差只有成对更换风机齿轮、叶轮轴,降低或消除齿轮齿侧间隙,消除此类故障。

  2)轴承轴向游隙调整不到位、轴承座磨损造成风机振动的解决方法

  首先要检查轴承滚动体、弹道的磨损情况,再对滚动轴承游隙进行测量,看是否存在轴承轴向定位不佳,通常对轴承端盖加减垫子压铅的方法来调整轴向间隙。若均在标准值范围内,取下轴承检查轴承是否存在跑外圈情况,若发现轴承室有磨损痕迹,可使用环氧树脂、配一定量的邻苯二甲酸、乙二胺进行粘接固定,可以消除此类故障。

  3)通过调整从动齿定位销位置来实现叶轮、墙板、机壳之间的间隙调整的方法

  从动齿轮是由齿轮圈和齿轮毂组成,从动齿上的定位销就是为了调节间隙而设计的。检修罗茨风机时,在安装齿轮副前不要固定从动齿轮的齿轮圈与齿轮毂之间的定位销,先把从动齿轮装入风机中。

  此时主动齿轮与从动齿轮配合通过联轴器手动盘车,调整齿轮副间隙以及之间叶轮的间隙,待间隙调整好后,将从动齿轮的齿轮圈与齿轮毂锁紧螺栓紧固,整体从设备中拆除,重新选择定位孔位置配钻,此时得到的定位孔才是风机目前的精确定位尺寸。

  安装后可将两叶轮倾斜45°将从动齿轮对准主动齿轮压入轴上,依次装入齿轮挡圈、齿轮垫圈和锁紧螺母。进行盘车,若不能转动,叶轮回转再调整齿轮的位置,直到转动灵活没有刮蹭或死点。

  此时紧固锁紧螺母,并在两叶轮之间用塞尺进行测量其间隙控制在30至60丝之间,再将从动齿轮的齿轮圈和齿轮毂用锁紧螺母紧固后拆下,在车床上配钻。这样就能准确地确定齿轮副齿侧间隙和叶轮之间的间隙,保证了叶轮与机壳、墙板之间的间隙符合设计标准。

  山东锦工有限公司

  山东省章丘市经济开发区

  24小时销售服务

  上一篇: 离心风机和罗茨风机分不清?看这里

  下一篇: 罗茨鼓风机可以柴油机驱动吗

罗茨鼓风机叶片和墙板间隙:罗茨鼓风机的结构及故障判断

  原标题:罗茨鼓风机的结构及故障判断

  一、罗茨鼓风机结构组成

  完整的鼓风机由气缸体,主从动转子,主从动齿轮,侧壁板,轴承,密封件,安全阀,止回阀,过滤器和弹性接头组成。

  二,工作原理

  罗茨鼓风机是一种容积式鼓风机。有两个三叶片叶轮在由壳体和墙板密封的空间中相对于彼此转动。由于每个叶轮是渐开线或外摆线的包络线。每个叶轮的三个叶片是相同的,两个叶轮是相同的,这大大降低了加工难度。叶轮在加工过程中采用数控设备,确保两个叶轮在中心距离恒定时无论两个叶轮的位置如何都能保持一定的最小间隙,从而保证气体泄漏在允许范围内。

  两个叶轮以相反的方向转动,因为叶轮和叶轮,叶轮和壳体,叶轮和墙板之间的间隙非常小,因此进气口形成真空状态,空气进入进气室在大气压力的作用下,然后,每个叶轮的两个叶片与墙板和壳体形成一个密封腔,进气腔的空气通过密封连续地进入排气腔在叶轮旋转过程中由两个叶片形成的空腔,气室内的叶轮相互啮合,使两个叶片之间的空气被挤出,使连续运转,空气从进气口连续送出到排气口,这是罗茨鼓风机整个工作过程。

  三,故障判断

  1.鼓风机无法启动或被阻挡

  ①转子相互摩擦或与气缸摩擦

  ②风扇有大的过载

  ③检查输送气体的压力和温度;检查转子和气缸的状况

  ④杂质可能通过鼓风机进入,必须检查鼓风机

  ⑤如果鼓风机内有污垢,则必须清洁。

  2,运行噪音异常

  ①转子之间或转子与气缸之间的相互摩擦(调整间隙)

  ②齿轮间隙过大(更换分配齿轮)

  ③轴承损坏或间隙过大(更换轴承)

  转子腔内杂质沉积引起的转子不平衡(清洁转子)

  3,风扇过热

  ①过滤器中有污垢,导致空气流动太慢(清洁或更换过滤器)

  ②吸入压力和排气压力之间的压差过大(检查燃气管道或安全阀设置)。

  ④油位和油粘度太高(更换油类型并调整油位)

  ⑤转子之间或转子与气缸之间的内部间隙过大(检查转子和轴承)

  4,进气量太低

  ①进气侧有过大的真空(清洁检查过滤器)

  ⑤间隙过大(检查风扇)

  5,输入功率太高

  ①操作条件与订单中提到的操作条件不同。

  ②检查进气侧的真空值(过滤器是否被污染)

  公司全体员工热忱欢迎广大客户前来洽谈业务,携手共创美好未来!

  :

优质高压罗茨鼓风机 罗茨鼓风机论文 罗茨鼓风机的维修厂家

山东锦工有限公司
地址:山东省章丘市经济开发区
电话:0531-83825699
传真:0531-83211205
24小时销售服务电话:15066131928


上一篇:
下一篇:
锦工最受信赖的罗茨风机回转风机品牌
版权所有:Copright © www.bestblower.com 山东锦工有限公司 鲁ICP备11005584号-5 2016   地址:山东省章丘市相公工业园
电话:0531-83825699传真:0531-83211205 E-mail: sdroo@163.com 网站地图
罗茨风机咨询电话